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Physicians advocating the frequent use of microneedling for skin care are advocating for a potentially dangerous 
procedure, especially when coupled with the topical application of bone marrow stem cell derived cytokines. Not 
only are the physicians who advocate for frequent microneedling as a skin care procedure not Board Certified in 
Dermatology (FAAD or FAOCD), they are not dermatologist; rather they are family practitioners. Further, they 
don’t have M.D. or D.O. medical doctorate degrees, rather they have truncated bachelor in medicine degrees with 
limited education and training. Unlike board certified dermatologists, these physicians simply have neither a 
deep knowledge of dermatology, nor knowledge of the immunology of the skin. These physicians have developed 
and promulgated books, blogs, and training classes for these procedures that are offered to non-physicians, often 
to estheticians. Advocating the frequent use of microneedling for skin care, especially when coupled with the 
topical application of bone marrow stem cell derived cytokines induces a damaging chronic inflammatory state 
in the skin, and likely systemic inflammation too. Microneedling of the skin, even under sterile conditions, elicits 
a sterile inflammatory response, including early recruitment of neutrophils, throughout the layers of the skin, 
and even systemically. Given the non-sterile nature of the skin, a rich microbiome, including bacteria, viruses, 
and fungi, at the skin’s surface, these procedures may allow microneedling to cause these microorganisms to gain 
entry into the epidermis and dermis, furthering an inflammatory response already induced by the wound and 
associated inflammatogenic self-molecules. The use of bone marrow stem cell cytokines can amplify the in-
flammatory response induced by injury, instead of resolving the inflammation such as that by the pro-resolving 
effects induced by adipose derived mesenchymal stem cells and fibroblasts acquired from skin tissue.   

Sterile inflammation, including an early innate immune response 
involving neutrophils [1], has evolved as a physiological response to 
tissue injury and is an aspect of wound repair and the restoration of 
homeostasis. However, like any potent immune response, when over-
active such as in repetitive or constant injury, or environmental and 
lifestyle factors, such as topical products that induce inflammation or 
repeated microneedling procedures, the sterile inflammatory response 
becomes pathological. The human epidermis ranges in depth between 
about 30 and 100 μm depending on a number of parameters, including 
the area of the body measured, with facial areas being amongst the 
thinnest [2–4]. The shortest microneedles used for procedures are 0.25 
mm (250 μm) and the longest are 2.5 mm (2500 μm), and actual 
penetration depths as measured by an F.C.A.S. accredited plastic sur-
geon range from 235 μm for the 0.25 mm needles up to about 2000 μm 
for the longer needles [5]. The channels created by the microwounding 
allowed optimal penetration of topically applied molecules at about 5 

min post-procedure with significant penetration lasting for 30 min. 
Thus, even the shortest needles used for microneedling (0.25 mm) will 
induce wounding of the epidermis (100 μm) and dermis, with the 
physical wound lasting for at least 30 min, and the induction of 
inflammation lasting significantly longer (see Fig. 1). 

Transient mechanical forces in wounding will cause the skin’s scaf-
fold of normal, adult cell-cell and cell-ECM contacts to be interrupted 
and the colony of cells in the wounded area to change their phenotypes 
for a period of days [6]. Antonio et al. [7] observed tumor formation at 
sites of the animal that are particularly prone to friction or damage. 
Wounding that induces skin tumors has been found in mice that express 
a mutated oncogene or had been pretreated with a mutagenic chemical 
develop papilloma at the site of a skin injury. Likewise, wound-related 
melanoma formation in oncogene-sensitized mice has been previously 
reported [8]. [9] tested whether injury and tumor development may be 
causally connected, and found evidence for this in their zebrafish model. 
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The age-old hypothesis that tumors are wounds that never heal, was 
given credence when Fuch’s lab [10] unearthed a striking lineage in-
fidelity phenotype in stem cells that arises transiently in a wound 
response and persists in malignancy. The lineage infidelity of the cells, if 
persisting in a state of stress, leads to an increased probability of cancer. 

Skin wounding, including that caused by microneedling, induces, if 
done in sterile conditions, sterile inflammation or self-debris. Self-debris 
released as a consequence of cell and organelle injury, without infection 
[11], and their products functions as endogenous “damage”-associated 
molecular patterns (DAMPs) that activate innate and adaptive immu-
nity, including neutrophils and macrophages, and T cells. In the pres-
ence of damage-associated molecular patterns, NF-κB activation leads to 
hematopoietic stem cell (HSC) death, and contributes to the reduced 
HSC self-renewal potential of aged HSCs, and possibly systemic 
inflammation [12]. Such damage signals occurring in the epidermis are 
sensed by keratinocytes (KCs) and cause secretion of IFNβ by activated 
KCs, leading to further activation of the adaptive immune system and 
maturation of dendritic cells and T cell stimulation [13]. In age related 
dysfunction of the epidermis in a mouse model or disruption by tape 
stripping, proinflammatory cytokines are measured in the skin, as well 
as systemic proinflammatory cytokines measured in the blood [14]; the 
same results were found in humans [15]. Once keratinocyte stress is 
detected, the dendritic epidermal T cells (DETC) localized in the 
epidermis respond by the local secretion of chemokines, cytotoxic 
effector molecules, growth factors and cytokines that orchestrate skin 
inflammation, tumor killing, and a wound healing response [16]. A 
defining feature of sterile inflammation is that it can often result in 
chronic inflammatory diseases [17], and cancer [18]. Published in 
JAMA Dermatology [19] was the report of a lack of safety studies for 
microneedling, but, indeed, the continuing report of adverse events 
likely caused by microneedling? Not only did Soltani-Arabshahi et al. 
report facial allergic granulomatous reactions following microneedling, 
they also reported systemic effects including arthralgias in the joints and 
erythema nodosum in the fat layers proximal to the skin. Reports of 
these granulomatous AEs continue [20]. Some of the adverse events 
were shown to endure for at least 9 months. Systemic effects due to 
injury of the skin are not surprising given that [15] have shown that 
barrier function disruption, without disruption of the proximal 
epidermis and dermis of the skin will lead to not only proinflammatory 
factors in the skin, but these proinflammatory factors, such as IL-1b and 
IL-6 and TNFa, will increase systemically as they are found in the blood 
circulation of patients with barrier function disruption. The systemic 
inflammation in the circulation can be reduced by reparation of the 
skin’s epidermal barrier function. Animal models have also shown that 
over expression of immune-related molecules exclusively in the skin 

results in systemic autoimmunity [21], even when that over expression 
is confined to the epidermis [22]. Disruption of barrier function not only 
induces cutaneous inflammation by stimulating proinflammatory cyto-
kine release, but also induces inflammatory cell maturation and infil-
tration. Barrier disruption also increases the density of mast cells, a 
major source of histamine in the dermis, and a major cause of pruritus. 
The increased release of histamine by mast cells may also further disrupt 
epidermal barrier function by inhibition of keratinocyte differentiation 
[23] and inhibition of the production of proteins involved in barrier 
integrity [24]. Even when only the stratum corneum is disrupted, an 
innate immune response is fully initiated and developed, and an adap-
tive immune response is elicited, but may be somewhat dampened by 
IL-33 and consequent induction of Treg function [25]. Inflammatory 
cells and their chemical messengers are essential components of the 
tumor microenvironment [26]. Microneedling, through pressure effects 
alone, wounding, or exposure to air, can induce the release of ATP from 
keratinocytes [27,28]. In turn, extracellular ATP can induce a number of 
effects, including a proinflammatory response and proliferation [29]. 

Skin wounding can cause Basal Cell Carcinomas (BCC), and the 
carcinoma can arise from multiple stem cell populations, including the 
bulge and the interfollicular epidermis (IFE). BCCs derive almost 
exclusively from the epidermis, with a small minority of tumors arising 
from hair follicle infundibulum [30]. The originating cell can influence 
the subtype of BCC that develops and can also affect the likelihood that a 
tumor will form. During chronic wounding, the notable repair and ho-
meostatic functions of macrophages are lost, which results in their 
involvement in the development of diseases, including cancer [31]. 

Damage in keratinocytes (KC) has been shown to cause a significant 
degradation of hyaluronic acid (HA) at the KC pericellular matrix, i.e. 
the HA immediately surrounding the KC. The decrease in HA deposition 
was correlated to an upregulation of HYAL 1 and 2, enzymes responsible 
for HA cleavage and the generation of low molecular weight-HA frag-
ments found to induce inflammation [32]. The ensuing inflammatory 
response due to KC damage was initially mediated by reactive oxygen 
species (ROS), with the eventual induction of a number of cytokines 
including IL-18, a key mediator in allergic dermatitis [32]. Micro-
needling has been reported to cause an immune response when used for 
scar reduction [20], and the upregulation of IGF-1 in a three dimen-
sional human skin model [33]. The Schmitt et al. study used a simplified 
skin model consisting of bovine matrix cultured with human fibroblasts. 
The immune system present in the normal epidermis and dermis was 
devoid in this model system. Therefore, a normal immune response to 
microneedling could not be analyzed in the [33] study. Microneeedling, 
given its wounding of the epithelium, will induce a release of EGF and 
activate EGF receptors [34]. In human melanoma-initiating cells, IGF-1 

Fig. 1. A rich innate and adaptive immune system is located in the epidermis and the dermis. The shortest microneedles (0.25 mm) used for skin procedures 
penetrate through both the epidermis and the dermis. 

G. Maguire                                                                                                                                                                                                                                       



Journal of Tissue Viability xxx (xxxx) xxx

3

has been shown to drive their expansion through an 
epithelial-mesenchymal transition (EMT) process [35]. In keratinocytes, 
IGF-1 stimulates membrane protrusion and facilitates cell spreading 
[36], and in mouse keratinocytes, crucial biochemistry for oncogenic 
HRAS oncogene initiation, the driver of squamous carcinoma, appears to 
involve the up-regulation of ligands for and autocrine activation of 
EGFR [37]. In cultured keratinocytes, EGF and IGF-1 work synergisti-
cally to promote keratinocyte proliferation [38]. Thus, microneedling 
can induce the release of both IGF-1 and EGF, two synergistic factors 
involved in the induction of cancer. 

Also, after epidermal injury, stem cells from the bulge are recruited 
into the epidermis and migrate in a linear manner toward the center of 
the wound [39]. These migrating stem cells from the bulge express 
SmoM2 thus inducing these cells to form tumors [40]. Further, 
wounding of aged skin in the dermal layer, as can happen with even the 
shortest needles used in microneedling, will induce fibroblasts to release 
matrix proteins. However, the aged fibroblasts will fail to release all of 
the important matrix proteins, including HAPLN1, a protein that binds 
HA and glycoproteins, and important for preventing melanoma metas-
tasis [41]. This is another mechanism through which cancer and cancer 
metastasis may be induced when aged skin is wounded, included during 
microneedling. One means to obviate the problem during wounding of 
aged skin may be to topically apply the secretome from young fibro-
blasts that contains HAPLN1 [41]. 

Further complicating the inflammatory response induced by micro-
needling, is the non-sterile nature of the skin, a rich microbiome, 
including bacteria, viruses, and fungi, at the skin’s surface that micro-
needling may allow to gain entry into the epidermis and dermis, 
furthering an inflammatory response already induced by the wound and 
associated inflammatogenic self-molecules [42,43]. Indeed, micro-
needling of the skin is such an effective means to transmit microor-
ganisms, including viruses that the procedure can be used to vaccinate 
against influenza [44]. 

Despite these data indicating an induction of innate and adaptive 
immune system inflammatory responses by microneedling, claims that 
“It is “repetitive” micro-injury of the epidermis, along with increased 
absorption of topicals sustained over prolonged periods, that achieves 
optimum results” have been made [45]. The authors claim that the 
shortest microneedles only injure the epidermis, but careful measure-
ments find that the epidermis and dermis are injured by the shortest 
needles [5]. Repetitive microneedling as a skin care technique in com-
bination with topically applied bone marrow stem cell (BMSC) cytokines 
has been advocated (https://www.prlog.org/12333438-stem-cell-ski 
ncare-products-benefiting-recovery-after-medical-aesthetic-treatments. 
html) and (http://barefacedtruth.com/2015/06/28/bfgf-microneedli 
ng-procollagen-anti-collagen/). These advocations are promulgated to 
a wide audience, mostly composed of non-physicians who are instructed 
to perform these dermatological procedures without qualification. 
Given that BMSC cytokines activate a number of inflammatory pathways 
[46,47], cause over proliferation [48] and consequential aging [49], 
cancer (Zu et al., 2012; [50], and fibrosis [51,52], the use of BMSC cy-
tokines to further increase the inflammatory and cancer causing effects 
of repetitive microneedling are dangerous. An important danger in using 
BMSCs for donor stem cells is that they are often tainted with cancer 
cells [53], and this problem is often not recognized even under stringent 
screening of the donor cells. This problem is even underappreciated 
among physicians performing BMSC transplants [54]; Maguire, 2019B). 
For example, about one-third of patients diagnosed with localized breast 
cancer, carcinoma cells have already disseminated to distant anatomical 
sites, including bone marrow, at the time of initial cancer diagnosis 
(Pantel et al., 2008). The vast majority of these cells reside for extended 
periods of time in an apparently innocuous quiescent state. Once a 
tumor cell disseminates into the BM, the cancer cell often displays 
phenotypic characteristics of BMSCs rendering cancer cells difficult to 
distinguish from BMSCs [55]. Cancer cells can fuse with BMSCs and 
change their phenotype (Terada et al., 2020) or release exosomes to 

change the phenotype of BMSCs to cancer promoting [56]. Indeed breast 
tumor cells fuse spontaneously with bone marrow mesenchymal stem 
cells [57]. The molecules and exosomes that cancer cells release, 
potentially present in BMSC cytokines, are known to induce cancer 
[58–62]. Under the same conditions where cancer cell derived exosomes 
initiated cancer, dermal fibroblasts did not [62], therefore the exosomes 
specifically from cancer cells and potentially bone marrow stem cells 
may induce cancer. 

Wounds share many phenotypic characteristics with tumors, 
including the increased expression of genes with oncogenic potential, 
the recruitment of immune cells, increased epithelial cell migration and 
proliferation, and recruitment of bone marrow stem cells (BMSCs). For 
example, analysis of human prostatectomies showed that BMSCs rep-
resented 0.01–1.1% of total cells present in the prostate tumor [63], and 
BMSCs also home to wounded skin [64]. Biochemical pathways used by 
BMSCs for trafficking are the same as those used by tumor cells for 
metastasis [65]. For instance, chemokines and cytokines produced 
during chronic inflammation of wounded skin, such as SDF-1, influence 
the behavior and migration of cancer cells. These are the same chemo-
kines and cytokines responsible for physiological stem cells homing back 
to the marrow cavity. The blood also brings SDF-1 to the skin, expressed 
by BMSCs and contained in their exosomes (Wang et al., 2014) that 
promotes the scarring of skin [66], another risk factor for cancer [67, 
68]. [69] found that a surgical wound with an acute inflammatory 
response could cause dormant breast cancer cells in mice to start 
growing and spreading. Thus, the postsurgical wound-healing, inflam-
matory response was found to be responsible for the early eruption of 
previously dormant cancer cells at distant anatomical sites. Like the 
early phase of a wound without infection, neutrophils are actively 
recruited to the wound [11], including the wound that a growing tumor 
makes. Once there, they may contribute to the cancer’s progression. In 
some cancers, such as melanoma, the presence of neutrophils around the 
tumor correlates with a poorer prognosis [70]. 

BMSCs are normally only called into action, migrating to and 
releasing their cytokines into the skin, even into the epidermis [71], only 
during a major wounding event, often with associated infection. Once 
they are recruited into the skin, BMSCs can change phenotypes into a 
cancer associated fibroblast (CAF) and have been found to be a 
contributing factor to skin neoplasm development [72,73]. As such, 
BMSC cytokines activate a major inflammatory, proliferative state to 
fight infection and close the wound. As chronic wounds have been 
likened to cancer [74,75], chronic application of BMSC cytokines, just as 
seen during the release of BMSC cytokines during chronic wounds, may 
also be likened to cancer. 

1. Safety considerations: ADSCs preferred over BMSCs 

When addressing safety and efficacy concerns of the stem cell types 
used to derive their exosomes/secretome, we must consider tissue spe-
cific stem cells [76]. Choosing the appropriate stem cell type to match 
the condition to be treated is critical not only to efficacy, but most 
importantly, safety of the therapeutic. Beyond the genetic and epige-
netic factors that influence stem cell phenotype as embryonic stem cells 
differentiate into somatic stem cells [77], the immediate niche of the 
stem cell will have profound influence on the cell’s phenotype [76]. As 
previously described [78] the molecules released from adipose derived 
mesenchymal stem cells (ADSCs) and fibroblasts can be used renorm-
alize the immune system in epithelial tissue in general, and even be used 
for application to the upper respiratory tract to better prevent and 
remediate Covid-19 and other viral diseases. The stem cell technology is 
likely to work well when combined with nasal vaccination [79]. This is 
in contradistinction to bone marrow mesenchymal stem cells (BMSCs), 
that exhibit some potentially dangerous characteristics that should limit 
their use in therapeutic development. 

The complexity of the bone marrow (BM) niche can lead to many 
stem cell phenotypes, whether we consider hematopoietic stem cells 
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(HSCs) or bone marrow mesenchymal stem cells (BMSCs). Here I will 
discuss the properties of BMSCs, not HSCs. Because of the complexity, 
many BMSC phenotypes exist, including disease causing phenotypes 
that are varied and hard to distinguish [80] – a part of the problem in 
using BMSC for therapeutic development. This complication, unlike that 
for ADSCS, includes recirculated cells, particularly recirculated cancer 
cells. Once a tumor cell disseminates into the BM, the cancer cell often 
displays phenotypic characteristics of BMSCs rendering cancer cells 
difficult to distinguish from BMSCs [55]. BM is a site of BMSCs that may 
differentiate into HSCs [81] and recirculating blood cells that may 
differentiate into BMSCs [82,83]. BMSCs are also found outside of the 
niche in peripheral blood [84] and home into sites of injury [85] and 
cancer tissue where they are educated into becoming a pro-cancerous 
phenotype [86]. Recirculated melanoma and myelogenous leukemia 
cells [87] in BM interact with BMSCs to change the phenotype of the 
BMSC to one that is cancer promoting by enhancing their proliferation, 
migration, and invasion and altering the production of proteins involved 
in the regulation of the cell cycle [88]. Indeed, melanoma tumor cells 
start to disseminate to BM during the initial steps of tumor development 
[89]. In breast cancer patients, detection of recirculated cancer cells that 
disseminated in BM predicts recurrence of the cancer [90]. Cancer cells 
can fuse with BMSCs and change their phenotype [91], or release exo-
somes to change the phenotype of BMSCs to cancer promoting [56]. 
Indeed breast tumor cells fuse spontaneously with bone marrow 
mesenchymal stem cells [57]. This fusion may facilitate the exchange of 
cellular material from the cancer cell to the BMSC rendering the fused 
cell more oncogenic [92]. Further, others have found the same result of 
this fusion and exchange of cellular material, which has been found to 
increase metastasis. For example [93], found that human hepatocellular 
carcinoma cells with a low metastatic potential exhibit a significantly 
increased metastatic potential following fusion with BMSCs in vitro and 
in xenograft studies. Thus, the BMSCs and their molecules/exosomes, 
having been conditioned by tumor cells, were found to increase the 
probability of cancer in human patients [94]. Another potential problem 
with BMSCs is that T cells migrate into bone marrow and skew he-
matopoietic stem and progenitor cells towards myeloid lineages that 
augment inflammatory brain injury [95]. In other words, T-cells recir-
culate to bone marrow and condition cells in the BM to an inflammatory 
phenotype. Whether this occurs in mesenchymal stem cells in the BM is 
yet to be determined. The various phenotypes of BMSCs, including the 
cancerous phenotypes are difficult to distinguish [96]. In contrast, even 
ADSCs derived from cancer patients have been found to be safe for 
therapeutic development [97]. 

One of many reasons why ADSCs are preferred compared to BMSCs is 
that ADSCs express a low level of major histocompatibility complex 
(MHC) class I molecules and do not express MHC class II and cos-
timulatory molecules. Even the exosomes of BMSCs express MHC class II 
proteins [98]. These problems in BMSCs are amplified when using 
donor, allogeneic BMSCs that have been replicated many times, essen-
tially aging the cells, during expansion to develop the therapeutic. This 
is in contradistinction to ADSCs. Critically, when comparing experi-
mental data of BMSCs to ADSCs from the same human donor, “ADSCs 
have a “younger” phenotype,” according to stem cell scientists [99]. 
Indeed, Burrow et al. found that BMSCs have, among other negative 
attributes compared to ADSCs, an increased level of senescence 
compared to matched ADSCs. Senescent cells develop the 
senescence-associated secretory phenotype (SASP), a pro-inflammatory 
set of molecules where the local tissue effects of a SASP or specific SASP 
components have been found to be involved in a wide variety of 
age-related pathologies in vivo such as hyperplastic diseases, including 
cancer [100]. Whereas the use of BMSC transplants has a history of 
medical adverse events, including the induction of cancer in the recip-
ient [51], fat grafting, along with its constituent ADSCs, have a long 
history of safety in medical procedures dating back to1893 when the 
German surgeon Gustav Neuber transplanted adipose tissue from the 
arm to the orbit of the eye in an autologous procedure to fill the 

depressed space resulting from a postinfectious scar [101]. Fat grafting’s 
long history of being safe, regardless of the harvesting techniques used 
in patients [102] has been recently reviewed by physician-scientists at 
Baylor College of Medicine [103]. Furthermore, physician-scientists at 
Stanford University School of Medicine have favorably reviewed the 
safety and efficacy of using ADSCs to augment the outcomes of autolo-
gous fat transfers [104]. [105] have found that ADSCs and fat grafting 
for treating breast cancer-related lymphedema is safe and efficacious 
during a one year follow-on, where patient-reported outcomes improved 
significantly with time. In a randomized, comparator-controlled, sin-
gle-blind, parallel-group, multicenter study in which patients with dia-
betic foot ulcers were recruited consecutively from four centers, ADSCs 
in a hydrogel was compared to hydrogel control. Complete wound 
closure was achieved for 73% in the treatment group and 47% in the 
control group at week 8. Complete wound closure was achieved for 82% 
in the treatment group and 53% in the control group at week 12. The 
Kaplan-Meier (a non-parametric statistic used for small samples or for 
data without a normal distribution) median times to complete closure 
were 28.5 and 63.0 days for the treatment group and the control group, 
respectively [106]. Treatment of patients undergoing radiotherapy with 
adult ADSCs from lipoaspirate were followed for 31 months and patients 
with “otherwise untreatable patients exhibiting initial irreversible 
functional damage” were found to have systematic improvement or 
remission of symptoms in all of those evaluated [107]. In animal models 
with a full thickness skin wound, administration of ADSCs, either 
intravenously, intramuscularly, or topically, accelerates wound healing, 
with more rapid reepithelialization and increased granulation tissue 
formation [108], and topically applied the ADSCs improved skin wound 
healing by reducing inflammation through the induction of macrophage 
polarization from a pro-inflammatory (M1) to a pro-repair (M2) 
phenotype [109]. Further, tumor-associated autoantibodies (TA) have 
been discovered in early- and late-stage disease for many human ma-
lignancies [110]. These TAs may exacerbate oncogenesis by disrupting 
the immune system. ADSCs have been shown to limit B cell mediated 
autoimmunity [111] and reduce autoantibody levels in serum [112], 
potentially reducing the potential for oncogenesis and metastasis. 

In conclusion, microneedling, even with the shortest available nee-
dles, results in damage to the epidermis and dermis, thereby inducing an 
innate and adaptive proinflammatory immune response, including 
cellular proliferation. The use of topically applied bone marrow 
mesenchymal stem cell cytokines also induces an inflammatory innate 
and adaptive inflammatory state, and proliferation. Chronic inflamma-
tion in the skin, even when limited to only the epidermis, will induce 
system inflammation as measured in the circulation. While micro-
needling can be an important procedure for scar removal [113] and hair 
regrowth [114], for example, repetitive microneedling combined with 
bone marrow mesenchymal stem cell cytokine application will induce 
chronic inflammation and chronic wounding, a condition similar to the 
state of cancer [74,75,115–117]. 
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