PUBMED PUBLICATIONS + WHITEPAPERS

ScienceDirect

Fabrication and Self-Assembly of Nanobiomaterials
Applications of Nanobiomaterials Volume 1 – Chapter 7

Greg Maguire

Exosomes: Smart Nanospheres for Drug Delivery Naturally Produced by Stem Cells

Fabrication and Self-Assembly of Nanobiomaterials, Edition: 1. Chapter 7

ABSTRACT: The exosome is a nanoparticle that is naturally produced in great quantities by human stem cells. As a nanosphere that is produced and released by stem cells, exosomes serve to package hundreds of types of signaling molecules into one protective delivery vehicle. Considering one exosome, the nanovehicle will deliver the panoply of molecules together in space and time, therefore acting on the target cell in one synergistically administered packet and yielding “systems therapeutic” efficacy. Given the exosome’s ability to easily diffuse through tissues, seek out target cells, exhibit immune-privilege, and pass the brain–blood barrier, they can be considered the equivalent of a smart liposome. However, unlike that of the simple liposome, the lipid bilayer of the exosome contains transmembrane proteins with a variety of external peptide sequences, and numerous polysaccharides and tethered proteins on the outer leaflet of the liposome-like structure that impart smart behavior. Further, synthetic biology techniques and state-dependent regulation of the production of the exosome by the stem cell can lead to manipulation of many important characteristics of the nanosphere for pharmaceutical delivery purposes. Defined and controlled manipulation of the naturally produced exosome can be useful for modifying the internal and external content of the nanosphere, and the resulting targeting, delivery, and efficacy characteristics of the exosome. The remarkable collection of physical, chemical, and biological properties of the exosome provides a new platform technology that is be used to develop and scale-up very safe and efficacious drug delivery systems used in many different drug-dosing regimens in many parts of the body, and useful for treating many different indications.

READ MORE >>

JOJ Dermatology & Cosmetics

Greg Maguire (1), Steven McGee (1), Linda Green (1), Holly Brown (2), Geralyn O Brien (3), Tracy Lacina (4), Donna Glazer (5), Debra McCarthy (6) and RN Valentin Isacescu (7)

1 – NeoGenesis Inc, USA
2 – Looking and Feeling FAB, Inc, USA
3 – Integrative Cancer Review, USA
4 – Skin Deep Salon & Spa, USA
5 – Faceit London, UK
6 – North County Clinical Research, Oceanside, USA
7 – California Physiological Society, USA

Submission: October 27, 2021; Published: November 12, 2021

*Corresponding author: Greg Maguire, NeoGenesis Inc, California Physiological Society, US

Case Studies in Physiological Renormalization of Skin in Traumatic, Irradiation, Autoimmune, and Aging Conditions Using S²RM® Stem Cell Released Molecules Enhances Healing and Reduces Pain

ABSTRACT: Wounds, aging, and autoimmune conditions of the skin involve a disruption of skin homeostasis, especially a disruption of proteostasis. In this study we used S²RM® technology, a proprietary combination of stem cell released molecules from multiple types of skin stem cells, to renormalize homeostasis of the skin, including a renormalization of proteostasis. Dramatic reductions in scarring, pain, redness, and inflammation, more rapid and complete wound healing, and an overall enhancement of the appearance of the skin were achieved in a number of skin conditions. Prevention of radiation dermatitis was achieved by concurrent topical administration of S²RM® during radiation treatment. The current study demonstrates that simple topical application of S²RM® technology is a powerful means to renormalize homeostasis of the skin and remediate and prevent a number of skin indications.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire

The California Physiological Society, Berkeley, CA, USA

Chronic Inflammation Induced by Microneedling and the use of Bone Marrow Stem Cell Cytokines

ABSTRACT: Physicians advocating the frequent use of microneedling for skin care are advocating for a potentially dangerous procedure, especially when coupled with the topical application of bone marrow stem cell derived cytokines. Not only are the physicians who advocate for frequent microneedling as a skin care procedure not Board Certified in Dermatology (FAAD or FAOCD), they are not dermatologist; rather they are family practitioners. Further, they don’t have M.D. or D.O. medical doctorate degrees, rather they have truncated bachelor in medicine degrees with limited education and training. Unlike board certified dermatologists, these physicians simply have neither a deep knowledge of dermatology, nor knowledge of the immunology of the skin. These physicians have developed and promulgated books, blogs, and training classes for these procedures that are offered to non-physicians, often to estheticians. Advocating the frequent use of microneedling for skin care, especially when coupled with the topical application of bone marrow stem cell derived cytokines induces a damaging chronic inflammatory state in the skin, and likely systemic inflammation too. Microneedling of the skin, even under sterile conditions, elicits a sterile inflammatory response, including early recruitment of neutrophils, throughout the layers of the skin, and even systemically. Given the non-sterile nature of the skin, a rich microbiome, including bacteria, viruses, and fungi, at the skin’s surface, these procedures may allow microneedling to cause these microorganisms to gain entry into the epidermis and dermis, furthering an inflammatory response already induced by the wound and associated inflammatogenic self-molecules. The use of bone marrow stem cell cytokines can amplify the inflammatory response induced by injury, instead of resolving the inflammation such as that by the pro-resolving effects induced by adipose derived mesenchymal stem cells and fibroblasts acquired from skin tissue.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire
Dr. Maguire is with NeoGenesis, Inc. in San Diego, California.

The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics

ABSTRACT: Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire

SRM Living Foundry, 2658 Del Mar Heights Rd, Ste 416, San Diego, California 92014, United States.

Maturing From Embryonic To Adult Policy On Stem Cell Therapeutics

ABSTRACT: The National Institutes of Health (NIH) closure of the agency’s Center for Regenerative Medicine (CRM), which focused on therapeutic development of induced pluripotent stem cells (iPS), was caused by the lack of progress in practical development of the iPSs for use in human therapies. As the NIH evaluates priorities in future stem cell therapeutic development, adult stem cell processes in the human body need to be prioritized for a number of key reasons, including (1) adult stem cells release many types of molecules that provide much of the therapeutic benefit of stem cells and (2) adult stem cells and somatic cells exist in a state of dynamic transition between different potency levels and can be naturally driven by the microenvironment to a state of pluripotency. Thus, the study and development of adult stems for therapeutic use can include naturally induced pluripotent stem cells (NiPSs) that lack the problematic genetic and epigenetic reprogramming errors found in iPSs.

READ MORE >>

International Journal of Scientific Research

Michael Ryan – Clinics, Dubai & Manchester, UK
Greg Maguire* – NeoGenesis Inc San Diego, CA92121 USA. *Corresponding Author

Introduction: Alopecia is a chronic dermatological disorder affecting millions of people, in which people lose some or all of the hair on their head. Although alopecia has many forms, all are characterized as a chronic inflammatory disease that affects the hair follicles. Alopecia often has psychological consequences, including high levels of anxiety and depression.

Case presentation: We report hair regrowth in 12 of 13 patients with alopecia treated with adult stem cell released molecules in combination with micro needling.

Conclusion: Adult stem cell released molecules in combination with micro needling is an efficacious, safe, and affordable treatment for alopecia.

READ MORE >>

PubMed – National Library of Medicine

Michael Traub, ND; Pamela Vendetti, LE; Steven McGee, Greg Maguire, PhD, FRSM

Remediation of Mild, Acute Radiation Dermatitis Using a Stem Cell-Based Topical

ABSTRACT: Introduction: Wounds of the skin induced by irradiation involve a disruption of skin homeostasis and an increase in inflammation. Physiological renormalization treatment strategies using the molecules released from stem cells that restore proteostasis and regulate the immune system and reduce inflammation may be effective in treating skin conditions. Previous studies of severe radiation dermatitis found a significant reduction in symptoms using a combination product of the secretome from adipose mesenchymal stem cells and dermal fibroblasts, but mild radiation dermatitis has yet to be studied using this product.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire

Dept. of Preventative and Medicinal Chemistry, NeoGenesis Inc. And BioRegenerative Sciences Inc, San Diego, CA, USA

Stem cells part of the innate and adaptive immune systems as a therapeutic for Covid-19

ABSTRACT: Some stem cell types not only release molecules that reduce viral replication, but also reduce the hypercytokinemia and inflammation induced by the immune system, and have been found to be part of the innate and adaptive immune systems. An important component of the stem cell’s ability to ameliorate viral diseases, especially the complications post-clearance of the pathogen, is the ability of adult stem cells to reset the innate and adaptive immune systems from an inflammatory state to a repair state. Thus, the molecules released from certain stem cell types found to be safe and efficacious, may be an important new means for therapeutic development in Covid-19, especially for late-stage inflammation and tissue damage once the virus has cleared, particularly in the aged population.

READ MORE >>

Greg Maguire, Ph.D., Steven McGee, Lee Paler, Linda Green, Holly Brown, Geralyn O’Brien, Tracy Lacina, Donna Glazer, Valentin Isecescu, M.D.

NeoGenesis Inc, San Diego, CA 92121 USA;  Looking and Feeling FAB, Inc, Integrative Cancer Review, Skin Deep Salon & Spa, Faceit London, London UK,  North County Clinical Research, Oceanside, CA 92056 USA

Corresponding author: gmaguire@neogenesis.com

ABSRACT: Wounds, aging, and autoimmune conditions of the skin involve a disruption of skin homeostasis, especially a disruption of proteostasis. In this study we used S²RM® technology, a proprietary combination of stem cell released molecules from multiple types of skin stem cells, to renormalize homeostasis of the skin, including a renormalization of proteostasis. Dramatic reductions in scarring, pain, redness, and inflammation, more rapid and complete wound healing, and an overall enhancement of the appearance of the skin were achieved in a number of skin conditions. Prevention of radiation dermatitis was achieved by concurrent topical administration of S²RM® during radiation treatment. The current study demonstrates that simple topical application of S²RM® technology is a powerful means to renormalize homeostasis of the skin, and remediate and prevent a number of skin indications.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire*,1 & Peter Friedman1,2

1. Bio Regenerative Sciences, Inc. San Diego, CA 92121, USA
2. Animal BioSciences, LLC Bartow, FL 33830, USA
*Author for correspondence: gmaguire@neogenesis.com

The safety of a therapeutic product composed of a combination of stem cell released molecules from adipose mesenchymal stem cells and fibroblasts

ABSTRACT: Aim: We sought to determine the safety profile of a therapeutic candidate composed of the released molecules from a combination of human adipose-derived mesenchymal stem cells and fibroblasts. Although stem cells, their progenitor cells and the molecules that are released from these cells have some demonstrated therapeutic value, much more needs to learn about the efficacy, mechanism of action and the safety profiles of these stem cell-based therapeutics.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire 1, 2 , Lee Paler 1, 2, Linda Green 1, Rosa Mella 3, Maria Valcarcel 3 & Patricia Villace 3
1. BioRegenerative Sciences, Inc., San Diego, California
2. Auditory Sound Waves, LLC, San Diego, California
3. Innoprot, Derio-Bikkaia, Spain

Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy

ABSTRACT: Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire

BioRegenerative Sciences Inc., San Diego, La Jolla, CA 92037, USA

Adult stem cell transplants have been used for over 40 years to save the lives of those with severe blood diseases. Success with this procedure has given widespread optimism for developing additional stem cell-based therapies for a wide range of diseases. Scientists have even made progress in repairing organs or generating new organs from stem cells, including, for example, kidney tissue. While we have learned much about stem cell biology, and indeed stem cell therapeutics in the last decade, disappointments in translating this knowledge into approved medical therapies are many. 

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire, Peter Friedman

The SRM Molecular Foundry; BioRegenerative Sciences, Inc.

Systems Biology Approach to Developing S²RM®-Based “Systems Therapeutics” and Naturally Induced Pluripotent Stem Cells

ABSTRACT: The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S(2)RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S(2)RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S(2)RM-based healing in the human body, this “systems therapeutic” approach using S(2)RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire
BioRegenerative Sciences Inc, and NeoGenesis Inc
*Author for correspondence: gmaguire@neogenesis.com

Physiological Renormalization using Systems Therapeutics

A number of new therapeutics in development and in the marketplace, including ‘checkpoint inhibitors,’ suggest how a paradigm shift in therapeutic strategy is underway for many diseases and indications. The new strategy involves both a renormalization of physiology to treat the disease and a combination of molecule types, working on different pathways, often at different levels and tissues of the system, for example proteins and microbiota, to institute a systems therapeutic approach. This approach had been shown to be efficacious with few adverse side effects.

This article briefly describes and provides examples of a combinatorial strategy for a new means of therapeutic development, a ‘systems therapeutic,’ combined with a new means for disease treatment ‘physiological renormalization.’ The overall idea is to develop systems therapeutics [1], where multiple types of molecules target multiple pathways underlying the disease or condition.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire

SRM Living Foundry , 2658 Del Mar Heights Rd, Ste 416, San Diego, California 92014, United States.

Contact: gmaguire@srmfoundry.org

Maturing From Embryonic To Adult Policy On Stem Cell Therapeutics

ABSTRACT: The National Institutes of Health (NIH) closure of the agency’s Center for Regenerative Medicine (CRM), which focused on therapeutic development of induced pluripotent stem cells (iPS), was caused by the lack of progress in practical development of the iPSs for use in human therapies. As the NIH evaluates priorities in future stem cell therapeutic development, adult stem cell processes in the human body need to be prioritized for a number of key reasons, including (1) adult stem cells release many types of molecules that provide much of the therapeutic benefit of stem cells and (2) adult stem cells and somatic cells exist in a state of dynamic transition between different potency levels and can be naturally driven by the microenvironment to a state of pluripotency. Thus, the study and development of adult stems for therapeutic use can include naturally induced pluripotent stem cells (NiPSs) that lack the problematic genetic and epigenetic reprogramming errors found in iPSs.

READ MORE >>

PubMed – National Library of Medicine

The SRM Molecular Foundry at UCSD, BioRegenerative Sciences, Inc., San Diego, California 92014, United States

Greg Maguire

Systems Biology Approach to Developing “Systems Therapeutics”

ABSTRACT: The standard drug development model uses reductionist approaches to discover small molecules targeting one pathway. Although systems biology analyzes multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. Similar to that in physics where a departure from the old reductionist “Copenhagen View” of quantum physics to a new and predictive systems based, collective model has emerged yielding new breakthroughs such as the LASER, a new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics.”

READ MORE >>

Stem Cell Released Molecules (SRM) for the Treatment of Moderate to Severe Keratoconjunctivitis Sicca (Dry Eye) in Humans and Animals

ABSTRACT: I-Ease is a sterile topical ophthalmic eye drop for treating dry eye or keratoconjunctivitis sicca. The topical composition includes proteins derived from cultured stem cells obtained from the human eye. The eye drops utilize Stem Cell Released Molecules (SRM) obtained from culturing stem cells to form a multitude, or system, of proteins (SRM), which includes growth factors, cytokines, and other factors, also known to be involved in wound healing and used to treat the dry eye within a model of wounded and inflamed corneal tissue. Further, the SRM from two or more types of stem cells when used in combination provides a positive, synergistic effect that enhances the healing process beyond that observed with the use of SRM from only one cell type. When two or more cells are used to produce SRM, and the SRM combined from the different cell types, we call this S2RM. I-Ease has been shown to be safe and effective in dry eye patients, glaucoma patients, allergy patients, and those with corneal transplants.

BACKGROUND

It has now been shown that the classic aqueous-dominated tear film model of dry eye has been replaced by the more probable concept of a mucin and protein-dominated gel, including growth factors and cytokines. This gel has its highest concentration of proteins and mucins at the epithelial surfaces of the cornea and conjunctiva, and the protein and mucin concentration gradually decreases farther out into the tear film. In this model, the presence of proteins and mucin remains significant for the structure, stability and function of the entire tear film. In support of this new model of the tear film, treatments for dry eye that are produced from the patient’s serum have been shown to be effective in treating dry eye. The serum is thought to be effective because of the growth factors and cytokines contained in the serum. Many protein factors, such as Keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), are paracrine factors that maintain the tear film function and a healthy cornea, such as through the regulation of the proliferation, migration and differentiation of multiple types of limbal epithelial and stem cells. Recent studies of the tear film using laser interferometry and confocal microscopy indicates that the human tear film is 30 to 40 microns thick, more than four times thicker than earlier estimates (see for example Prydal, et al. 1992 and Prydal, et al. 2005). Based on tear film physiology and clinical observations, tear film abnormalities are commonly designated by focus on a specific deficiency, such as an aqueous tear deficiency, keratoconjunctivitis sicca (KCS), a mucin deficiency, a lipid abnormality, an impaired lid function, or an epitheliopathy. Although clinically useful, the simplistic concept of a lack of one component of the tear film as the cause of dry eye has given way to a much more sophisticated view of ocular surface disease that involves: (1) the health and regulation of the various glands contributing secretions to the tear film, (2) changes in the tear film itself, such as in osmolality and content of proteins and inflammatory mediators, and (3) what is viewed as a sort of final common pathway, the subsequent changes to the ocular surface (See McKenzie, et al. 2000). In fact, many clinicians and authors prefer the term “ocular surface disease” over “dry eye”, for it is change to the ocular surface, whatever the original cause, that results in the significant signs and symptoms of dry eye. The discomfort of ocular surface disease is expressed in ocular symptoms, such as dryness, grittiness, burning, soreness or scratchiness, with variation among individuals. These symptoms can also be exacerbated by factors such as environmental conditions and contact lens wear. The combination of varying clinical signs and symptoms has also been termed dry eye syndrome.

In the human eye, the secretory mucins MUC2 and MUC5AC have been detected (via transcripts at the nucleic acid level) from conjunctival isolates, and only MUC5AC has been localized to conjunctival goblet cells (See Pflugfelder, et al. 2000 and Sylvester, et al. 2001). Unique characteristics of normal human secreted ocular mucins are their wide size range and short oligosaccharide side chains.

The transmembrane mucin MUC1 is associated with the cell membranes of the entire corneal and conjunctival epithelial surface, except the goblet cells. Another transmembrane mucin is the mucin MUC4, which is associated with the cell membranes of the entire conjunctival epithelial surface, except the goblet cells. In a mild to moderate dry eye, the goblet cell density is not significantly reduced indicating that MUC5AC is most likely to be produced normally, in quantities sufficient to be spread over the entire ocular surface. However, localized early ocular surface changes resulting from dryness, such as that revealed by fluorescein or rose bengal staining, can be seen in the epithelia of the corneal and conjunctival surfaces. This localized damage to the ocular surface indicates that even marginal dryness might have a significant effect on the presence of functional MUC1 on the surface of the ocular epithelium. Since one of the proposed functions of MUC1 is to help the other, more abundant gel-forming ocular mucins adhere to the ocular surface, a paucity of MUC1 might significantly affect the stability of the tear film, even in the presence of an abundance of MUC5AC secreted by the conjunctival goblet cells (See Watanabe, et al. 2002 and Gipson 2004). There is some early evidence that with the progression of changes to the ocular surface mucins associated with dry eye, as detected by immunohistochemical methods, the goblet cells themselves try to make up for the lack of normal expression of MUC1 by the rest (non goblet cells) of the corneal and conjunctival surface epithelium, and begin expressing a MUC1-like molecule in their secretions.

The secreted ocular mucins are relatively large molecules, and have a significant role in the gel-forming nature of the tear film. The model of the greater part of the tear film being a highly hydrated mucus gel, rather than simply a watery aqueous layer, is becoming increasingly accepted. The viscoelasticity of the tear film derives from the specific structure and gel-forming properties of the ocular mucins, and allows the tear film to absorb the sheer force of the blink, which would otherwise irritate and damage the ocular surface. The transmembrane mucin, on the other hand, serves more as a protective layer on the actual cellular surface of the ocular epithelium, functioning to directly protect and lubricate the ocular surface, as well as to anchor the highly hydrated gel (mucus) of the tear film gel forming mucins, thereby assisting in the spreading and stability of the tear film over the ocular surface.

The importance of mucin in the natural tear fluid as a wetting agent, viscoelastic gel former, lubricant and barrier to bacterial adhesion has largely been reported. Limited success with so many various synthetic and substitute polymers indicate that supplementing the tear fluid with a compatible mucin from an exogenous source would appear to be a more direct and preferred method for addressing dry eye conditions. Part of the problem in the development of ocular surface changes in dry eye disease may be the dehydration of the mucus gel and subsequently the mucin layer of the cellular surface. Supplementing the tear fluid with mucin in an aqueous solution would be expected to help maintain the natural surface mucin layer of the eye by both the addition of the additional mucin molecules and the hydration provided by the aqueous vehicle.

The belief that the tear film is aqueous based and the ocular surface changes seen in Sjogren’s syndrome are due to desiccation, cause eye care practitioners to water the dry eye. However, studies show that, as stated above, the tear film is dominated by proteins and mucin and not water. (See Nelson, et al. 1992) The human tear film is not a 7-10 thin film, but a 30-35 p.m thick mucin gel. Bicarbonate may be critical to forming this gel as it is in forming the bicarbonate mucin gel that protects the stomach from autodigestion. (See Ubels, et al. 1995) The hallmark of the aqueous deficient dry eye, rose bengal staining of the conjunctiva, is not produced by desiccated cells, but is due to a deficiency in the protective mucin gel. (See Gilbard, et al. 1992) The ocular surface changes in dry eye include conjunctival squamous metaplasia, loss of integrity of cell membranes and junctional structures (fluorescein staining), and loss of the integrity of the mucin layer (rose bengal staining). Rose bengal staining and squamous metaplasia are not improved by the frequent application of non-preserved preparations. (See Nelson 1998) Bicarbonate and electrolyte solutions promote recovery of barrier function and ultrastructure in damaged ocular surface cells and increase corneal glycogen and goblet cell density. (See VanSetten 1990 and Kiatazawa, et al. 1990, respectively) These solutions, however, do not totally reverse ocular surface disease seen in Sjogren’s syndrome. Even with the addition of electrolytes and bicarbonate to artificial tears, watering the dry eye is not enough. It has been found that the application of autologous serum improved fluorescein and rose bengal scores and squamous metaplasia. This treatment also resulted in significant upregulation of MUC-1 in conjunctival epithelial cell cultures. The authors believed that the epidermal growth factor (EGF), vitamin A, and transforming growth factor (TGF) found in serum represent critical components missing from the tears of patients with Sjogren’s syndrome.

Studies have shown that some cytokines play an important role in the regulation of proliferation, differentiation, and maturation of the ocular surface epithelium, while other cytokines may be harmful. (See Weng, et al. 1996) Experimental studies demonstrate that EGF and hepatocyte growth factor (HGF), (See Vervo, et al. 1997; Van Sletten 1996; Yoshino, et al. 1996; Slomiany, et al. 1991; and Sotozono, et al. 1998) which are present in human tears and secreted by the lacrimal gland, are important in corneal wound healing. Both also increase as aqueous tear production increases. TGF-cc and TGF-P are found in human tears. (See Ubels, et al. 1986 and Ono, et al. 1994) Both are probably involved in corneal epithelial cell growth and differentiation. (See Ono, et al. 1994) Retinol, also secreted by the lacrimal gland and found in the tear film, is necessary for the maintenance of healthy ocular surface epithelium. (See Ono, et al. 1994) Not only may the tear film of patients with Sjogren’s syndrome be missing critical components, tears may actually contain substances that lead to ocular surface injury. Cytokines may be produced in or by the lacrimal gland in response to inflammation. These factors, delivered to the ocular surface by the tear fluid, may lead to inflammation of the ocular surface. mRNA for interleukins IL-1 and IL-6 has been detected in the lacrimal glands of autoimmune female MRL/lpr mice. (See Wilson, et al. 1996) Increased levels of IL-1 induces keratocyte apoptosis and metalloproteinases. (See Wilson, et al. 1996 and Girard, et al. 1991) IL-6 induces lymphocytic differentiation. In Sjogren’s syndrome, reflex tearing decreases with increased lymphocytic infiltration of the lacrimal gland. (See Tsubota, et al. 1996) Reflex tearing flushes debris from the ocular surface, dilutes substances in the tear film, and delivers higher amounts of certain cytokines to the ocular surface. The loss of reflex tearing results in reduced tear clearance causing prolonged retention of substances in the tear film. (See Barton, et al. 1997) It is likely that the loss of reflex tearing also results in the lack of delivery of cytokines and retinol critical to the growth and differentiation of ocular surface epithelial cells. The upregulation of MUC-1 suggests there are substances in serum, which promote reformation of the mucin gel, and, therefore, resolution of rose bengal staining. It is believed that similar substances, that are important in the maintenance of the mucin gel, are probably missing in the Sjogren’s dry eye.

Others have speculated on the use of serum tears. (See Fox, et al. 1984) Tsubota et al. suggests that serum tears, alone, may not be sufficient to treat dry eye. For example it has been found that the presence of cytokines and retinol are critical for the growth, differentiation, and wound healing of the ocular surface. Artificial tears flush out debris; dilute substances trapped in the tear film, and increase tear clearance. They do not, however, provide all the factors critical for the maintenance and repair of the ocular surface.

SUMMARY

I-Ease by BRS provides a method of treating dry eye by topically administering to the eye a human cornea and conjunctiva-derived combination of mucins and/or growth factors, or growth factors and cytokines derived from adult stem cells, in an ocular drop instillable composition which derived proteins and mucin is similar to those of the tear film proteins and transmembrane mucin expressed on the ocular surface epithelium, and to the gel-forming mucins secreted by the goblet cells. The novel compositions of I-Ease protects the ocular surface from dryness and absorbs shear forces of the blink, and assist the eye’s own secreted gel forming mucins (predominantly MUCS) in maintaining their viscoelastic properties and ensuing structure and stability of the tear film, thereby slowing or preventing the changes to the ocular surface seen in dry eye conditions. Additionally, I-Ease also treats the medical presentation of dry eye as, in part, a typical, progressive abrasion of the cornea causing a traumatic/wound condition that is ameliorated by the topical application of the SRMs to the eye, leading to a wound healing cascade and reduction of inflammation.

1. Summary

BioRegenerative Sciences was formed in 2009 to translate the discoveries of Dr. Greg Maguire while a professor at the University of California, San Diego School of Medicine. Those early studies at UCSD in the 1990s helped establish that adult stem cells release molecules into damaged tissue to induce tissue repair and regeneration, and that two (2) or more types of stem cells were involved, each type releasing a different pool of molecules to effectuate a synergistic healing response. The combination of molecules from a stem cell is called SRM (stem cell released molecules), and the SRM from two or more stem cell types is called S2RM. Maguire and Friedman developed these ideas into a patent-pending platform technology for the commercialization of a number of therapeutics, including the BRS eye drops, called I-Ease, for Dry Eye, and another eye drop, called Lens-Ease, for Cataract. These products contain the S2RM® molecules, and not any cells or tissues. Our approach has been described as “stem cell therapy without the cells” (Maguire 2013), leading to a type of therapeutic called a “systems therapeutic” (Maguire, 2014). Both products have been shown to be highly safe and efficacious in animal and human testing. Furthermore, while many new drugs/biologics brought to market recently were shown to have positive clinical risk benefit, many of the new drugs currently awaiting pricing from reimbursement authorities have not addressed relative cost benefit [1]. In contradistinction, the efficacy and the cost of the BRS products both display great relative superiority to comparative products on the market.

2. Background [Stem Cells, Stem Cell Products]

Adult stem cells in the human body are present in most tissues, including the eye, serving to regenerate and repair the tissue, quell pain, and modulate the immune response. Approximately eighty percent (80%) or more of the healing capacity of adult stem cells derives from their release of multiple molecules, including growth factors, cytokines, interleukins, antioxidants, exosomes, microRNA, and chaperone proteins, into the damaged tissue resulting in the orchestration of a healing response. The unique nature of the S2RM® technology centers on the identification, selection, culture, and stimulation of the appropriate stem cells, and then the capture of those molecules released from the stem cells. In this manner, proprietary and patent-pending technology is used in the BioRegenerative Science (BRS) laboratory to capture what the stem cells normally release in the body. This is a systems based approach where, instead of a reductionist approach using one or two molecules for treatment, all of the molecules from the stem cells act together as they normally do in the body in order to deliver the emergent properties of the system of all molecules. Further, BRS uses a technology that mimics the manner in which the body heals itself whereby two or more types of stem cells become resident at the site of injury, and the two or more types of stem cells release their pools of molecules into the tissue in concert, producing an emergent and powerful, synergistic healing effect. The overall effects of S2RM technology are twofold: 1. Mimicking the effects of SRM on those cells surrounding the stem cells, and 2. Enhancing the effects of the endogenous stem cells themselves.

The S2RM® technology, exclusively used by BioRegenerative Sciences, has the advantage compared to other stem cell technologies of capturing a full and natural complement, or “system,” of known molecules. This full complement of captured molecules from stem cells are subsequently injected into, or topically applied to, the patient in a defined and precise spatiotemporal dosing schedule to begin the systems-based regenerative process. The known dosing parameters for S2RM are in contradistinction to that for stem cell-based therapies where the cells cannot easily be controlled once they are removed from the laboratory setting and administered to the body.

Examples of topical S2RMTM Technology include eye drops for dry eye therapy, and for cataract.

3. The S2RM® Technology for Dry Eye and Cataract

A. Dry Eye

Tear fluid forms a tear film over the cornea and the conjunctiva of the eye. Dry Eye is associated with a reduction in the quantity and/or quality of the tear film. The tear film contains aqueous solution, a broad spectrum of fatty acids [2], and a multitude of signaling molecules, including SRM [3]. The composition of the tear film is significantly altered in dry eye, including a down regulation of many proteins as analyzed by proteomics of 386 protein types in human dry eye patients [4]. The source of these proteins in the tear film, as well as the source of other signaling molecules, is not well understood but likely from multiple cell types, including stem cells, in the various ocular tissues. The constant bathing of the anterior ocular tissue with SRM is thought to be important for maintaining the cornea and conjunctiva. The BRS approach to restoring the tear film in dry eye is to replace the missing signaling molecules though an application of SRM to the corneal surface. The BRS product is called I-Ease, a sterile ophthalmic solution that is dropped into the eye and supplies S2RM® to the anterior surface of the eye to bathe the cornea and the conjunctiva in all of the molecules needed to maintain and heal tissue.

The mechanism of action of I-Ease is believed to: 1. increase the anti-oxidant capacity of the cornea, 2. recondition the stem cell niche of the limbus and 3.mimic the release of SRM from the resident stem cells in the stem cell niche of the limbus and secreting glands of the eye, including the meibomian gland.

B. Cataract

As we age, the continued incidence of photons on the lens tissue, and the consequent oxidation of the tissue, along with other aging mechanisms, including stem cell dysfunction in the lens capsule and epithelium [5,6], degrades the lens tissue and results in opacification. While little is known about the exact causes of cataract, we know that, for example, the lens capsule is a reservoir for growth factors [5] to maintain the tissue, and that a high antioxidant capacity within the lens is needed to buffer the len’s constant light exposure. The BRS approach to restoring lens function and to preclude or reduce cataract formation is to replace the missing signaling molecules though an application of SRM and antioxidants to the lens. The BRS product is called Lens-Ease, a sterile ophthalmic solution that is dropped into the eye and supplies S2RM® and added antioxidants to the lens, thus bathing the lens in all of the molecules needed to maintain, protect, and heal tissue.

The mechanism of action of Lens-Ease is believed to: 1. increase the anti-oxidant capacity of the lens, 2. recondition the stem cell niche of the lens capsule and 3. mimic the release of SRM from the resident stem cells in the lens capsule stem cell niche.

Figure 1. Schematic of the eye showing the Cornea, and the Lens.

Figure 2. Location of possible stem cell niches partially responsible for production of SRM bathing the cornea.

4. Results for Dry Eye and Cataract

A. Dry Eye I-Ease

Over 100 patients successfully using the product for severe dry eye, post-LASIK irritation, Fuch’s corneal dystrophy, corneal ulcer, and post-transplant irritation. Ophthalmologists in North and South America carry the product in their offices for sale to patients, and the product is being recommended by Dr. Anne Coleman, MD, PhD., faculty at Jules Stein Eye Institute, UCLA School of Medicine, and Dr. Colleen Grace, M.D. at the University of Michigan, Henry Ford Hospital.

Figure 3. Before and after picture of dry eye in canine. I-Ease smoothes the corneal surface and reduces irritation after one week of application.

Testimonial:

Dear BRS,

I began wearing contact lenses when I was a senior in high school. I wore contacts daily for a period of about four years with no problems at all. I regularly replaced my contacts and followed each of my doctor’s instructions. After some time, I began to slip up and occasionally fell asleep with my contacts in. I began to notice a minor burning sensation and irritation when wearing contacts, which progressively worsened until I was unable to wear contacts at all.

I thought that by taking some time off, wearing my glasses and allowing my eyes to heal, that I might again be able t wear contact lenses. Turns out that I was wrong, my eyes did not heal on their own, not even after 4 years of wearing glasses. I tried several treatments as directed by my doctor, but nothing worked. I had all but given up on ever wearing contact lenses again.

Then, I met Peter and Greg from BioRegenerative Sciences, who gave me a free sample of I-Ease. After using I-Ease twice a day for about a week, I finally was able to wear my contact lenses.

I now wear contacts every day, and continue to use I-Ease for maintaining healthy eyes. I would recommend I-Ease to anyone who has trouble wearing contact lenses due to irritability.

Thanks BioRegenerative Sciences!

Erika Csaszi

San Diego, CA

B. L- Ease

Pilot studies suggest L-Ease is powerful in preventing and reducing cataract formation. Thus far 15 people are using the L-Ease with positive results. Several patients are being followed by ophthalmologists or other health care providers. Imaging shows the cataract diminishing in size over a period of several months, and patients report fewer visual disturbances after 1-4 months of usage. Additional animal and human studies are needed.

Testimonial:

Two years ago, at a routine eye exam, I was told that I had small cataracts developing in both eyes, nothing requiring surgical intervention, but to be watched. Given the extensive sun exposure in the past, combined with aging, this was not a huge surprise. The next year I was told the same thing, small, but to be watched. I was noticing one difference in my vision – an increased amount of “starring” around lights at night, which was very annoying, especially as I sometimes drive long distances at night. About 6 months after the last exam I started using the L-Ease, initially one drop a day, sometimes one drop two times a day if I remembered it. The drops have not caused any irritation or difficulty with my vision after using them, no side effects that I have noticed at all and I have been able to continue using my gas permeable contacts as usual. The one difference that I experienced is a decrease in the “starring” after using the drops for about 3 months. This was a notable difference for me and continues to be markedly improved. Last week I had my yearly eye exam. The description of my cataracts when I inquired was “trace”, “minimal”. It was also interesting that I have a slight improvement in my astigmatism in the Right eye. I have had significant astigmatism in both eyes since grade school which has only worsened, never improved at all. I’ve not had a Lasik procedure or used any medications or interventions other than the L-Ease, which would account for the changes that I have chronicled. I will continue to use the L-Ease, as I feel I can only benefit. I’ve had an increase in quality of my night vision and quantitative improvement in my eye health instead of a decrease in eye health which accompanies aging. Great drops!

Rita Friedman, RN, PhD, JD

Medical and Scientific Research Committee

BioRegenerative Sciences

5. Platform Production Technology

The BRS “Intelligent Molecules” Expression System, described in our paper (Maguire et al, 2013), employs a proprietary manufacturing process that allows the production of a wide variety of soluble and properly folded proteins and signaling molecules from multiple stem cell types important to immune modulation, and tissue repair and regeneration. The advantages of the process are in the production of biologically active proteins, exosomes, and signaling molecules, developing a “systems therapeutic” yielding a combination of many molecules, that act at multiple targets, resulting in a synergistic therapeutic with emergent therapeutic value. Furthermore, the production of the SRM (stem cell released molecules) does not require downstream solubilization, refolding, or other processes. Additionally, the process offers reduced purification requirements and lower production costs than other pharmacological and biological processes. The production of a therapeutic with a multitude of molecules represents a multi-targeted, systems biology approach to designing and manufacturing therapeutics. In the BRS “Intelligent Molecules” Expression System, multiple stem cell types are used to express SRM and thus the term “S2RM®” is used to denote that two or more types of stem cells are used to produce a synergistic effect. The combination of stem cells used to develop each therapeutic depend on the condition being treated, and the type of tissue underlying the condition. Included in the S2RM® is the BRS Exosome Delivery System that drives the active molecules through the layers of tissue into the target site, effectuating regeneration and repair in all damaged tissue regardless of the depth or remoteness of the target.

Unlike other so-called stem cell therapeutics, such as induced pluripotent stem cells (iPSCs) and parthenogenetic stem cells, which are artificially induced “stem cells,” and suffer from genetic and epigenetic programming errors, the adult stem cells in S2RM® Technology are genetically and epigenetically normal. Further, the production of some “stem cell” therapeutics does not allow the molecules to be completely processed in the cell and allow for proper post-translational modifications. That is, the S2RM® Technology allows the stem cells to fully process the molecules to the point of exosome production and release, including complete post-translational modification with resultant normal molecular folding characteristics and moiety construction. Thus, unlike iPSCs and parthenogenetic “stem cells” that don’t produce the complete set of the natural molecules of a stem cell and also fail to complete the full assembly of each of the molecules, the true adult stem cells in S2RM® Technology display correct genetic and epigenetic coding, with complete post-translational modifications to produce a natural and full complement of molecules, and with our processing technology the molecules develop complete post-translational modifications and hence full efficacy and a natural safety profile.

6. BRS: The Company and IP

BRS was founded in 2009 by Dr. Greg Maguire and Peter Friedman, and incorporated in the USA in 2010. In 1997 Dr. Maguire, who was professor at the University of California, San Diego, began injecting stem cells into the eye and brain for the regeneration of neural tissue. Those initial studies led to the discovery that stem cells release molecules into the damaged tissue to orchestrate a healing response. Other studies showed that multiple stem cell types, not just one type, home into the damaged tissue. These early studies, along with the work at BRS by Maguire and Friedman, led to the development of BRS’ patents that center on the S2RMTM Technology whereby the molecules, called stem cell released molecules (SRM), from multiple stem cell types, hence the designation S2RM, are used to formulate our therapeutic products.

Our IP strategy includes procurement of domestic and foreign patents in key markets for novel technologies relating to BRS’ core technology as well as such collateral technologies which are intended for product development and commercialization. While we disclose compositions and processes in our patents, not all processes are disclosed and remain as intellectual assets (trade secrets) within only a few individuals in the organization, namely Dr. Greg Maguire and Peter Friedman.

Currently, BRS has filed patent applications in the US relating to our core technology.

6. BRS solutions to the market needs

Dry eye is estimated to be a $1billion/year market in USA. Restasis has been the drug of choice at a cost of about $200/month to the consumer, and Restasis doesn’t work well (10% above placebo, FDA summary basis of approval) and stings the eyes. I-Ease eye drops by BRS is much more effective than Restasis, doesn’t sting, and costs $70/month, or less.

Cataract is debilitating, especially in our aging population. Current treatment is a costly and painful surgery that removes the lens and uses an artifical replacement lens. BRS’ L-Ease is an eye drop that prevents and reduces cataract formation allowing the patient to avoid surgery. We currently sell Lens-Ease for about $100/month. Results are usually seen in 2 to 4 months.

Our drug development programs for: 1. Dry eye, 2. Cataract were chosen to be undertaken first based on the following criteria:

1.  Cost and time to gain approval. Topical products with easy clinical endpoints to measure, and large, easily accessible patient populations to recruit for clinical trials.
2.  Large and growing markets. Each condition represents a large and growing patient population world-wide.
3.  Unserved or underserved market. Each condition lacks effective products for treatment of the particular condition.
4.  Chance for FDA “Fast track” status that will prioritize and hasten the approval time.
5.  Because the products are very efficacious, we expect a relatively low number of patients will need to be recruited and tested because a low variability in the clinical endpoint results. Therefore the trials should be relatively low costs given the fewer patients needed in the studies.
6.  Market [Total market with specific segments on USA, South America, Europe, Middle East, India and South East Asia] -Dry Eye – Estimated market in USA is approximately $1Billion annually. World-wide market is unknown, but underserved and growing.
-Cataract – The only treatment for cataract is currently lens replacement, a costly and invasive procedure that patients would like to avoid if a product were available on the market.
7.  Barriers to Entry [competition]
-Dry Eye – The product Restasis by Allergan is currently the product of choice. Restasis is not very effective: 10% better than placebo according to the FDA’s summary basis of approval. Restasis is also stingy and very expensive. Ophthalmologists tell me they don’t like to prescribe Restasis because of the expense and lack of efficacy, but that they currently have no better choice. With FDA approval/world-wide registration we expect quick acceptance by ophthalmologists and significant script activity.

-Cataract
An aging population means a greater incidence of cataract. No other product is available to prevent or treat cataract. Only cataract extraction through lens replacement is available as a treatment; an expensive and invasive procedure that is not well liked by patients. Our only entry to barrier will be that those ophthalmologists performing lens replacement surgery who will not embrace a product that lowers their surgery rate and therefore lowers their income.

8.  Product manufacturing
Products will need to be manufactured in cGMP facility starting with first-in-man studies. The I-Ease for dry eye, and the L-Ease for cataract will need to be manufactured as sterile eye drops. The active ingredients are manufactured by BRS, Inc. in the USA. All other excipients in the products are standard, easily-sourced, inexpensive ingredients commonly known to pharmaceutical manufacturers.

9.  Sales and Marketing strategy
License each product to large pharma company with world-wide reach and appropriate sales force.

10.  Funding requirements
We estimate a $1.5 million investment to bring each product through phase II. At phase III we would license the technology to a large pharma company for the studies and to bring the products to market.

References

Editorial. Failure To Launch. Nature Biotechnology 31, 1 (2013) doi:10.1038/nbt.2482
Rantamäki AH, Seppänen-Laakso T, Oresic M, Jauhiainen M, Holopainen JM (2011) Human Tear Fluid Lipidome: From Composition to Function. PLoS ONE 6(5): e19553. doi:10.1371/journal.pone.0019553
de Souza GA, Godoy LM, Mann M (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 7(8): R72.
Srinivasan S, Thangavelu M, Zhang L, Green KB, Nichols KK (2012) iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 2012 Jul 31;53(8):5052-9. doi: 10.1167/iovs.11-9022
Brian P. Danysh and Melinda K. Duncan (2009) The Lens Capsule. Exp Eye Res. 2009 February; 88(2): 151–164.
Mingyuan Zhou, Joshua Leiberman, Jing Xu, and Robert M. Lavker (2006) A Hierarchy of Proliferative Cells Exists in Mouse Lens Epithelium: Implications on Lens Maintenance. Invest Ophthalmol Vis Sci. 47(7): 2997–3003.
Maguire, G. et al (2013) Stem cell released molecules and exosomes in tissue engineering. Procedia Engineering.
Maguire, G. (2013) Stem cell therapy without the cells. Commun Integr Biol. 2013 Nov 1;6(6):e26631. doi: 10.4161/cib.26631.
Maguire, G. (2014) Systems biology approach to developing “systems therapeutics”. ACS Med Chem Lett. 2014 Mar 6;5(5):453-5. doi: 10.1021/ml500061.

Volume IX: NanoBioMaterials in Drug Delivery

Greg Maguire, Ph.D.

The SRM Molecular Foundry and BioRegenerative Sciences, Inc.

ABSTRACT: Nanoparticles, particularly exosomes, are naturally produced in great quantities by human stem cells. Exosomes are a nanosphere that are produced by stem cells for the purposes of protecting, and packaging hundreds of types of signaling molecules into one delivery vehicle so that the whole collection of molecules can be co-delivered in time and space and therefore utilized as one synergistically acting set of molecules by the neighboring target cell. Exosomes are smart nanospheres given their ability to easily diffuse through tissues, seek out target cells, pass the brain-blood barrier, and exhibit immunoprivilege.

The lipid bilayer of the exosome contains transmembrane proteins with a variety of external peptide sequences, and numerous polysachharides on the outer leaflet that impart smart behavior to the liposome-like structure. Further, genetic, epigenetic, and state-dependent regulation of the manufacture of the exosome by the stem cell can lead to important manipulation of many characteristics of the nanosphere for pharmaceutical delivery purposes. Defined manipulation of these naturally produced nanospheres can be useful for modifying the content, and the targeting and delivery characteristics of the nanosphere. Therefore, the exosome represents a powerful new platform technology to develop and scale-up a very safe and efficacious drug delivery system useful for many different drug dosing regimens, and for delivery to most parts of the body.

PubMed – National Library of Medicine

Mia Maguire, Greg Maguire, Ph.D.

BioRegenerative Sciences, Inc.

The role of microbiota, and probiotics and prebiotics in skin health

ABSTRACT: During the past decade, scientists have made great strides in understanding the microbiome’s role in human health. Today, the microbiome has become key in scientific research, therapeutic development, medical treatment, and as a news feature in the media. Most studies have focused on the microbiome of our gut, but recently researchers have turned their attention to other microbiomes, including that of the skin. These studies of gut and skin microbiomes are yielding very informative results, new treatment strategies, and the development of new prebiotic and probiotic products for the treatment of many skin conditions.

READ MORE >>

PubMed – National Library of Medicine

Greg Maguire, Ph.D.

BioRegenerative Sciences, Inc; The SRM Molecular Foundry; San Diego, CA USA.

Stem cell therapy without the cells

ABSTRACT: As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells(1) instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.(2) We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.(3) That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment.

READ MORE >>

Advanced Science Links